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DIFFIL4,CTION OF A SHORT WAVE AT THE JUNCTION 
BE, TWEEN TWO PLATES, ONE OF WHICH IS 

REINFORCED BY RIBSt 

A.  V. B A D A N I N  

Arkhangel'sk 

(Rece/ted 4 September 1995) 

The two-dimensional problem of the dittraction of a plane hydroacoustic wave at the junction between two elastic plates is 
considered. One of the plates is uniform and the other is reinforced with a periodic set of uniform stiffeners. The plates are 
joined in such a way that together they form a plane which splits the space into two subspaces. An acoustic medium fills one of 
these half-spaces. It is assumed that one cannot ignore reflection from the surface of the stiffeners nor neglect their moment 
impedance. The conditions at the junction of the plates is not completely fixed, i.e. the general solution of the problem is 
investigated. A modified stationary-phase method is used to investigate the solution obtained and enables the asymptotic forms 
of the field in the neighbourhood of particular directions to be obtained. @ 1997 Elsevier Science Ltd. All fights reserved. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

We will assume that an acoustic medium fills the upper half-plane --** < x < **. The acoustic-pressure 
field p ( x , y )  satisfies the Helmholtz equation 

(A + k2)u = 0 (1.1) 

Here  k 2 = to2/c 2 is the wave number of the oscillations of  the medium, to is the oscillation frequency, 
and c is the veloeitT of  sound in the medium. The two semi-infinite elastic plates are situated on the 
boundary-** < x <: **,y = 0. The oscillations of  the plate, which occupy the left half-axis, are described 
by Kirchhoff's equation 

4 4 
Lip(x) = (Ox - kOpy(X) + rip(x) = 0 (1.2) 

-oo < x  < 0, y = 0  

k 4 = MIto2/DI, vl = poc2/DI 

where Ox is the derivative with respect to x, py(x) is the value of the field p(x,  y)  on the plate, kl is the 
wave number of  the plate oscillations, M1 is the surface density, D1 is the cylindrical stiffness of  the 
plate, Po is the density of  the acoustic medium, py(x) is the derivative with respect t o y  o f p ( x , y )  on the 
boundary, and L1 is a differential operator, defined by (1.2). The plate, situated on the fight semi-axis, 
is reinforced with a periodic set of  stiffeners at the pointsx = na,y = 0, where n is any natural number 
and a is a fixed real number, equal to the distance between neighbouring stiffeners. Kirchhoff's equation 

Lu(x)  = (~4 _ k4)py(X)+ vp(x) = 0 (1.3) 
0 < x < ~ ,  y = 0  

k4=Mt.o2/D,  v =p0o32 / D 

is satisfied everywhere on the right semi-axis apart from these points. Here  k 0 is the wave number of 
the plate oscillations, M is the surface density, D is the cylindrical stiffness of the plate, and L is the 
differential operator defined by (1.3). 

We will assume, ia addition, that the functionp (x) is continuous together with its first derivativep'y(x) 
. • ~ ,  o o • • ° • 

wath respect to x everywhere on the x ares. Physically, th~s condlUon indicates that the displacements 
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and rotations of the plates are continuous at all points. Further, the function p'~(x) is continuous 
everywhere on the x axis with the exception of the point x = 0, and p"y(x) is continuous everywhere, 
apart from tlae pointsx = 0,x = na, where the following condition is satisfied at the pointsx = na (see 
[11) 

[p~;[x)l(na) = Zpy (na) (1.4) 

where If(x)] is the jump in the function f o n  passing through the point x = na. The condition forp~'to 
be continuous corresponds to the absence of a bending moment acting from the side of the ribs on the 
plate, while condition (1.4) indicates that there is no jump in the shear forces on passing through a rib. 

We will obtain the so-called general solution of the problem below. It contains a certain number of 
arbitrary constants. These constants can be found after substituting the contact conditions at the junction 
of the plates. It is assumed that the field p(x, y) satisfies the Meixner conditions on the ribs and at the 
junction of the plates. The solution of the problem satisfies the limiting absorption principle. All the 
calculations are carried out assuming that Im k 2 > 0, and in the final formulae we take the limit as Im 
k 2 ~ 0 .  

We will seek a solution of problem (1.1)--(1.4) in the form 

p(x,y)=po(x,y)+u(x,y), po(x,y)=pi(x,y)+pr(x,y) (1.5) 

Here 

Pi(x,y)=e -a(xc°+m), c0=cos%,  s0=sing0 (1.6) 

represents an incident plane wave, ~ is the angle of inddence,p,(x,y) is the field reflected by the uniform 
plates, andp~(x,y) satisfies the Helmholtz equation and boundary conditions (1.2) and (1.3) for all values 
ofx. By[2] 

. . . .  Re-ik(xco_yso)+ 1 7 d'L ei(~+~l(X)y)( C + R) ~-----~c ° ) (1.7) pr~X,Y) - - ~ L - ~  ~ 0 i~'Cl +(RI- iw(-kc°)  

R= S-(k°'v) R z S-(kl'vl) 
s + ( ~ , v ) '  = &(k~,v~) 

S± (~, 1]) = ik.xc 0 (k 4 c~ - ~4) + TI 

The first term represents the field reflected by the uniform fight plate, infinite on both sides, and R is 
the reflection coefficient [1]. The second term takes into account the effect of the left plate and the 
junction, and R1 is the reflection coefficient of the left uniform plate. The first two terms in the integral 
describe the field scattered by the joint: Co and C1 are undetermined constants, about which we spoke 
above, and which can be found from the conditions at the junction of the plates. Further 

wOO = t? (x )t- (x ) 

where l- and l~are the result of factorizing the symbols of the boundary operators l(Z) and la(Z) of the 
right and left plates, respectively (see (1.2) and (1.3)). 

In (1.5) u(x,y) satisfies the Helmholtz equation, boundary conditions (1.2) and (1.3) and the conditions 
on the ribs 

[a3u: ](na) = Zp~, (ha) (1.8) 

where the square brackets denote jumps in the function on passing through the pointx = na (see (1.4)). 
In addition, the field u(x,y) satisfies the limiting absorption principle and the Meixner conditions on 

the ribs. 
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2. THE SYSTEM OF EQUATIONS FOR THE 
BOUNDARY-CONTACT CONSTANTS 

The solution of (1.1)-(1.3), (1.8) can be obtained from the condition 

u(x, y) = "~ Zuy(na)g(x, y;na) (2.1) 

Here and everywhere henceforth summation is carded out from n = 1 to n = oo; g(x, y; x'), x' > 0 is 
the solution of the Helmholtz equation with the boundary conditions 

Llg(x, y; x9 = O, x < O, Lg(x, y; x9 = 8(x - x3, x > 0 

We can equate some of the arbitrary constants in the solution of this problem to zero. 
Using the Wiener-Hopf method, we obtain 

g(x'y;x')=~l-~ "- 7 ~_~i(Xx+'/O.)y) 1 7 dt w(t)e_it ., 
z= - -  w(k)  2n) :.o ~ - t  l(t) 

(2.2) 

The integration contours pass above the singularities of the integrand, which lie on the negative semi- 
axis, and below the singularities which lie on the positive semi-axis (with the exception of the point 
= t). The contour in the inner integral passes round the point Z = t from above. 

The fight-hand side of (2.1) contains unknown values of the normal derivative of the acoustic field 
on the ribs x = na, y = 0. It is sufficient to obtain these values in order to obtain a solution of problem 
(1.1)-(1.4). 

Differentiating both sides of (2.1) with respect toy and assuming thatx = ma,y = 0, we can obtain 
an infinite system of linear algebraic equations for the unknowns ~(na) .  However, it is much more 
convenient to introduce the new unknown quantities 

Om=(po+U)y(ma),  m > 0  

The system of equations for Vm has the form 

V m -~ ,Zvngy(ma,O;na)= P0y(ma), m > 0 (2.3) 

3. INVESTIGATION OF THE SYSTEM 

We will consider (2.3) as an equation in space e2 of sequences of complex number, where we will 
assume that Im k 2 :~. 0, i.e. we have not transferred to limiting absorption. 

Consider the structure of the matrix {gy(ma, 0; ha)} of system (2.3). From (2.2) we have asymptotically 
for large values of ka 

gy @rid, 0; ha) = iT(~)ae ixlm-nla + iT(~)~ le ix(m+n)a + tO( ( k[ m - nl a) - ~  ) + 

+q=O( ( kna ) - ~  ) + r.O( ( kma ) -3/2 ) (3.1) 

( i = a W(7~Z) ) 
'*' 2xw- ; 

with certain limits t, qm and rn. Here Z is the positive root of 1(~.), and the prime on l(k) and w(k)  denotes 
a derivative with respect to k. The remaining terms in this asymptotic form correspond to the matrix 
of a certain limited operator in e2, which is small in norm for large ka. 

The second relation of (1.5) and Eqs (1.6) and (1.7) give 

poy(ma) = pe -itmac° + qe etma + O((kma) -~ )  (3.2) 

( iw-(-kc° ) ] 
V(X) Co.}.i~C I +(Rl - g )  p = i k ( R - 1 ) s ° '  q = - w ' ( ~ )  z+kc  0 .] 

Despite the fact that the asymptotic forms (3.1) and (3.2) are written for real k, they retain their form 
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for complex k also, such that I m k  2 > 0. All the terms here decrease exponentially, while the residual 
terms decrease more rapidly than the main terms. 

Bearing Eqs (3.1) and (3.2) in mind, we will rewrite system (2.3) in the form of an equation in ¢2 
space 

v - B y  - C o  - f . B O ~  =A+~_A (I), e=(ka) -3/2 (3.3) 

Here B is an operator whose matrix has the form {i~(z)OLa/Xlm"nla};tn=l, the matrix of the operator C is 
{i~(z)cq e/x~n+nla} m,,=l, the operator ~(1) is formed by the residual terms in (3.1),A is a sequence of 
elements of the form { p e - i t m ~ ° + q ~ n n a } m =  1, and M 0) is a sequence formed from the residual terms of 
(3.2). 

In addition to (3.3) we will consider an equation of the form 

- BT) - C 6  = A (3.4) 

We will apply the theory of approximate methods [3] to the pair of equations (3.3) and (3.4). 
Subtracting (3.4) from (3.3) we obtain that the following equation must be satisfied for the difference 

u = v - ~ between the exact and approximate solutions 

u - B u  - C u  = e(B(I) (u +0")+ A (I)) (3.5) 

Solving the approximate equation (3.4) we obtain an explicit expression for the operator R, which is 
the inverse of the operator (1 - B - C). Equation (3.5). Equation (3.5) can be converted to the form 

u = ER(BO)(u +u ) +  A O)) (3.6) 

This equation can be solved by iterations if the condition for the Neyman series to converge 

q = 1 - ell RIIII B ° ) I I>  0 (3.7) 

is satisfied. 
Hence, when condition (3.7) is satisfied, the unique solvability of the exact equation (3.3) follows 

from the unique solvability of the approximate equation (3.4). Moreover, the estimate of the accuracy 
of the approximation employed 

I lu l l~  < elIRII(IIB°)(IlulI+IIOII+IIA°)II) 

i.e. 

Ilull~< q-lEII RII(IIBO)IIII~ I I+ I IA° ) I I )  

follows from (3.6). 
Hence, when condition (3.7) is satisfied the accuracy of the approximation is proportional to e. 
We will henceforth retain the notation v for the approximate solution. 

4. SOLUTION OF THE SYSTEM 

We will separate the principal par tof  the system in the short-wave limit as ka --~ **. We obtain from 
(2.3) 

tJ m - Y .  B e  n eiZIm-nlu = H e  ixma + p e  -amac° , m > 0 

B = iT(Z)(xZ, H = " ~ Z v , , e i X n " i T ( z ) o q  + q  

(4.1) 

(4.2) 

Note that H is an unknown quantity. 
The solution of a system of the form (4.1) by the Wiener-Hopf method is known [4]. Hence, for the 

function 
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in the unit circle I ~.il = 1 we obtain the expression 

e'Z" - e-r~" ÷ P e ik"q( 0 (4.3) V(;)= H e_i~, ,_O _ -(-e,h,q~ 

Here  0 is the Floquet factor, which is the root of the dispersion quadratic equation 

02 - 2(cos za + iBsin Za)0 + 1 = 0 

which is less than uaaity in absolute value when Im k 2 > 0. 
To obtain the unknown constant H, it is sufficient to put ~ = e/x" in (4.3) and use (4.2) (see [4]). We 

obtain 

H = [ Z i ' (Z)~ '  pe i~a eiz" - e-iz" ] 
e -ikaq~ -- 0 + q(eix" -- O-I ) X 

eiXa _ e_i)~a ]-1 
× e i~" _ 0-1 _ ZiT()~)~I eixa . 

e -r~a - 0 

These calculations become incorrect in the neighbourhood of those frequencies for which the 
frequency Z of the surface wave is a multiple of the Floquet frequency (~ = --x + 2ran~a) or the frequency 
of  the projection of the incident wave (Z = kc0 + 2nn/a), where m and n are certain integers, while x 
is a real number such that 0 = e/va. Similar resonance phenomena are known in the theory of periodically 
reinforced plates and were pointed out, for example, in [5]. 

Taking (4.3) into account we obtain from (2.1) an expression for the first term in the short-wave 
asymptotic form of the diffracted field 

Z _~**/V(e-'X~) V(e~")w(-Z)  leifXx+'tO')Y)cl~, ka--->~ (4.4) 
u<x'Y)~-~x /<~.) t ' l ' ~ + i )  ) 

5. I N V E S T I G A T I O N  OF T H E  S O L U T I O N  

Expression (4.4) for the total field u(x,y)  can be uniquely split into two terms 

u(x, y) ~ Us(X, y)+ uo(x, y), ka --.-> ~, 

where 
-0,a 

Z ~ V(e )ei(k~+r(t)y)d. L 
u s ( x ' Y ) = ' ~ J -  l(k) 

=~Z w(-Z) V(eiZ, ,) ~ e i~x~+~x).'') arL 
u°(x'Y) 2n I'(Z ) - . w ( t ) ( L + Z )  

(the first term is equal to the sum of the fields diffracted by the ribs, while the second describes the 
field diffracted by tl~e joint due to the action of the overall surface wave propagating from the ribs). 

We can calculate the field in the far zone, due to the presence of the second term, in the usual way. 
It has the form of a cylindrical wave propagating from the joint. 

We will now investigate the structure of the field u,(x, y) diffracted by the ribs. In accordance with 
expression (3.4) it can also be split into two terms 

u s (x, y) = U~I) (X, y) + u~ 2) (x, y) (5.1) 

-O,a ei(kx+7(k)y) 
( l )  _ h , e d ~ ,  ( 5 . 2 )  

Us (x 'Y)-2- '~)**e"ZZ' -e- i~  l(~.) 
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p ** e-r~ e-,Xa _ e-iXa ei(kx+~'(k)y) 
us2)(x,y)=~_.~_j**e_,X t - e  - ~  e -'x~ - e  -i~c° /(X) 

Z H  eixa - e - i za  eiXa - eikac° 

The term us O) (x,y) corresponds to the field due to the action on the ribs of the surface wave propagating 
from the joint. 

We will use the method of steepest descents to calculate the far field for u (1) (x,y). We will first convert 
the integral by making the change of variable X = k cos t. Changing to polar coordinates r, 9, we obtain 
from (5.2) 

- ~ t  ei*'c°s~o-t) e-i~c°st 
u~ll(r,9) = -  ksint l(kcost) e -ikac°st - e  -ixa dt (5.3) 

The integration contour F consists of the sections (-x - i**, 7t], [~, 0], [0, i.o). 
The integrand in (5.3) has singularities at the points t = ~Pn, such that 

kcosq),, = "c + 2nn/a (5.4) 

for any integer n. For certain values of n, these singularities may lie close to the real axis. The steady 
contour F,t for integral (5.3) intersects the real axis t at the saddle point t = 9, which lies in the section 
(0, x). When the contour F is deformed into the steady contour F~ the poles of the integrand in (5.3) 
may be intersected. 

We will follow the change in the field pattern u~ (1) (x,y) in the far zone as the angle of observation 9 
changes. We will first assume that we are far from the joint of the plates and hence the initial angle is 
greater than the largest of the values of 9n (but not too close to n). Then, when the contour F is deformed 
into the contour Fst not one of the poles lying on the real axis is intersected. Hence, the contribution 
of this zone in the far field gives only a saddle point. Hence, the far field u~ 1) (x,y) is a cylindrical wave 
propagating from the joint. We will gradually reduce 9. Beginning from the instant when 9 falls in the 
5-neighbourhood of the angle 9., equal to the greatest of the real values of the angles 9,,, which satisfying 
condition (5.4), the form of the field us O) (x, y) changes. 

We will use the saddle-point method, modified taking into account the closeness of the location of 
the saddle point and the pole [6]. For simplicity we will confine ourselves to a small 5-neighbourhood 
of the angle 9.. Using formula (3.34) from [7], in the limit as 8 ---> 0 we obtain 

u~ 1) (r, 9) -heikr U 8 (5.5) 
kal(k cos cp. ) 

9=9 .+~ i ,  kr-->oo, 5--40 

k e_ i , r~2 /2 I i+( l_ i ) (C(~-~)3_ iS l~ -~3)  ] u -F L 

Here C(x) and S(x) are Fresnel integrals. 
The structure of expression (5.5) is similar to the well-known asymptotic forms (see for example, 

(3.36)-(3.41) in [7]) for the diffraction field at a wedge in the neighbourhood of the light-shadow 
boundary. This indicates that the field u0)~ in the neighbourhood of 9. and the field in the neighbourhood 
of the light-shadow boundary in the case of diffraction by a wedge are similar. 

When the angle 9 is reduced further the contribution from the point 9. is taken into account by a 
term equal to the residue of the integrand at the pole 9 = 9", since when the initial contour 1" is deformed 
into the contour Fa this pole will be intersected. For all 9 > 9" this contribution to u! 1) will be present 
in the form of the term 

e ikr cos( @-q~, ) 

-i'hk sin 9. l(k cos 9.)  e-ika cos~. (5.6) 

Hence, when 9 < 9", the field u~ 1) in the far zone contains a wave of the form (5.6) which does not 
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decrease as r increases, and so on. As the angle (p increases the contour Fst will sequentially intersect 
the poles % of the integrand, and all new terms of the form (5.6) corresponding to real values of (p,, 
will be added to u (:t). The change in the field u(1)~ when q~ passes through the pole q~,, is described by 
ue~ressions of the torm (5.5), containing Fresnel integrals. Hence, the general expression for the field 

outside of directions in which amplification occurs has the form of the sum of terms of the form 
(5.6), apart from terms O((kr)-~), taken over all n such that 0 < (p < q~,, < x. 

We can similarly investigate the term u(2) s in (5.1), corresponding to the field caused directly by the 
incidence of a plane wave on a rib. Here there are two infinite series of singularities of the integrand. 
These  are poles are the points % = x + 2xn/a with integer n, and also poles at the points Z = -kc0 + 
2~m/a with integer m. We will assume, for simplicity, that the singularities of these two series do not 
coincide. 

In the neighhouxhood of the angles (p = cp,, + 8 the field ~2) makes an additional contribution to 
u! 1), namely 

u~2)(r,~0)_ - P e  itr e -ikac°s~" - e  -ixa k e_ikr52/2U8 

• ka l (k  cosq) n ) e -itac°~n -- e ikaco 2i 

q~=Cpn+8, kr-->,o,  5--->0 

In addition, the field u(~ also has a number of directions ¢p = Om + 6 in which it increases, where 

~. ,  = - k c  o + 2rim / a (5.7) 

To fix our ideas we will asstune that the angle of incidence ~ is greater than n/2. Proceeding in the 
same way as in the previous case, we obtain that the far field in the direction of the angle q~ is the sum 
of terms of the form 

iP(e-ikacosO,~ _ e-iZ, ) e -ita¢ceOm 
k sin ~me itrc°s(cp-O'n) 

l(k cos 0 m ) e - i t a ~ ° -  - e - i~  

with Ore, which satisfies condition (5.7), such that 0 < q~ <Om < ~. If ¢p lies in the 5-neighbourhood of 
the angle Ore, we have 

u~2)(r,(p) ~ - P e  -itr e-itacosO,, _e- iXak e_it,62/2U6 

• ka l (k  cos 0 m ) e -ikac°s~m - e - i~  2i 

~ p = O m + 5 ,  kr  --> ~ , 5 - ->0  
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